Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Pharmaceutics ; 15(3)2023 Feb 26.
Article in English | MEDLINE | ID: covidwho-2297179

ABSTRACT

Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases. Nanotechnology represents one of the most effective approaches in elevating a drug's treatment efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling the release. The development of nanotechnology and materials has brought a profound revolution to medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Although the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a dominant position in formulation development, but increasingly active drugs have adopted nanoscale forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine, its indications, and the properties of commonly used nanocarriers and nanotechnology.

2.
Asian J Pharm Sci ; 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2262541

ABSTRACT

The liposome is the first nanomedicine transformed into the market and applied to human patients. Since then, such phospholipid bilayer vesicles have undergone technological advancements in delivering small molecular-weight compounds and biological drugs. Numerous investigations about liposome uses were conducted in different treatment fields, including anti-tumor, anti-fungal, anti-bacterial, and clinical analgesia, owing to liposome's ability to reduce drug cytotoxicity and improve the therapeutic efficacy and combinatorial delivery. In particular, two liposomal vaccines were approved in 2021 to combat COVID-19. Herein, the clinically used liposomes are reviewed by introducing various liposomal preparations in detail that are currently proceeding in the clinic or on the market. Finally, we will discuss the challenges of developing liposomes and cutting-edge liposomal delivery for biological drugs and combination therapy.

3.
Acta Pharmaceutica Sinica B ; 2022.
Article in English | ScienceDirect | ID: covidwho-2130064

ABSTRACT

Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.

SELECTION OF CITATIONS
SEARCH DETAIL